64,717 research outputs found

    Discrete Group Actions on Spacetimes: Causality Conditions and the Causal Boundary

    Full text link
    Suppose a spacetime MM is a quotient of a spacetime VV by a discrete group of isometries. It is shown how causality conditions in the two spacetimes are related, and how can one learn about the future causal boundary on MM by studying structures in VV. The relations between the two are particularly simple (the boundary of the quotient is the quotient of the boundary) if both VV and MM have spacelike future boundaries and if it is known that the quotient of the future completion of VV is past-distinguishing. (That last assumption is automatic in the case of MM being multi-warped.)Comment: 32 page

    Dipole-Field Contributions to Geometric-Phase-Induced False Electric-Dipole Moment Signals for Particles in Traps

    Get PDF
    It has been shown in an earlier publication that magnetic field gradients applied to particles in traps can induce Larmor frequency shifts that may falsely be interpreted as electric-dipole moment (EDM) signals. This study has now been extended to include nonuniform magnetic field gradients due to the presence of a local magnetic dipole. It is found that, in the high orbit-frequency regime, the magnitude of the shifts can be enhanced beyond the simple expectation of proportionality to the volume-averaged magnetic-field gradient.Comment: 2 pages, no figure

    Explicit representation and parametrised impacts of under ice shelf seas in the z∗ coordinate ocean model NEMO 3.6

    Get PDF
    Ice-shelf-ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean-sea ice model NEMO (Nucleus for European Modelling of the Ocean) currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface), inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used "three equation" ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated

    A summary of the ECAS MHD power plant results

    Get PDF
    The performance and the cost of electricity (COE) for MHD systems utilizing coal or coal derived fuels are summarized along with a conceptual open cycle MHD plant design. The results show that open cycle coal fired recuperatively preheated MHD systems have potentially one of the highest coal-pile-to-bus bar efficiencies (48.3%) and also one of the lowest COE of the systems studied. Closed cycle, inert gas systems do not appear to have the potential of exceeding the efficiency of or competing with the COE of advanced steam plants

    Structural parameters for globular clusters in M31 and generalizations for the fundamental plane

    Full text link
    The structures of globular clusters (GCs) reflect their dynamical states and past histories. High-resolution imaging allows the exploration of morphologies of clusters in other galaxies. Surface brightness profiles from new Hubble Space Telescope observations of 34 globular clusters in M31 are presented, together with fits of several different structural models to each cluster. M31 clusters appear to be adequately fit by standard King models, and do not obviously require alternate descriptions with relatively stronger halos, such as are needed to fit many GCs in other nearby galaxies. The derived structural parameters are combined with corrected versions of those measured in an earlier survey to construct a comprehensive catalog of structural and dynamical parameters for M31 GCs with a sample size similar to that for the Milky Way. Clusters in M31, the Milky Way, Magellanic Clouds, Fornax dwarf spheroidal and NGC 5128 define a very tight fundamental plane with identical slopes. The combined evidence for these widely different galaxies strongly reinforces the view that old globular clusters have near-universal structural properties regardless of host environment.Comment: AJ in press; 59 pages including 16 figure

    Gravitationally enhanced depolarization of ultracold neutrons in magnetic-field gradients

    Get PDF
    Trapped ultracold neutrons (UCN) have for many years been the mainstay of experiments to search for the electric dipole moment (EDM) of the neutron, a critical parameter in constraining scenarios of new physics beyond the Standard Model. Because their energies are so low, UCN preferentially populate the lower region of their physical enclosure, and do not sample uniformly the ambient magnetic field throughout the storage volume. This leads to a substantial increase in the rate of depolarization, as well as to shifts in the measured frequency of the stored neutrons. Consequences for EDM measurements are discussed
    corecore